MTB 2019

Notation

- \mathbb{Z} = the set of integers
- $\mathbb{N} = \{ n \in \mathbb{Z} : n \ge 1 \}$
- \mathbb{R} = the set of real numbers
- \mathbb{Q} = the set of rational numbers
- $\mathbb{C}=$ the set of complex numbers
- (1) Let A be a diagonalisable $m \times m$ matrix with entries from \mathbb{C} . Define $\exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!}$ assuming A^0 is the identity matrix. Prove that $\det(\exp(A)) = e^{\operatorname{Tr}(A)}$.
- (2) Let $H = \{1 + 4k : k \in \mathbb{Z}, k \ge 0\}$. An element $x \in H$ is called *H*-prime if $x \ne 1$ and x cannot be written as product of two strictly smaller elements of H.

(i) Show that $xy \in H$ for all $x, y \in H$.

(ii) Prove that every $x \in H$ greater than 1 can be factored as a product of *H*-primes but unique factorisation does not hold.

- (3) Find an ideal I in $A = \frac{\mathbb{Z}[X]}{(X^4 + X^2 + 1)}$ such that $\frac{A}{I}$ is a finite field with 25 elements.
- (4) (a) Suppose A and B are closed subsets of a topological space such that A ∩ B and A ∪ B are connected. Prove that A and B are connected.
 (b) Demonstrate that the conclusion may not hold if the assumption of A and B being closed subsets, is dropped.
- (5) Examine whether there is a polynomial $f(X) \in \mathbb{R}[X]$ such that $\frac{\mathbb{R}[X]}{(f(X))}$ is isomorphic **as rings** to the product ring $\mathbb{C} \times \mathbb{C}$.

(6) Let $f(x), g(x) \in \mathbb{Z}[X]$ with $f(x) = \sum_{j=0}^{n} a_j x^j$ and $b(x) = \sum_{j=0}^{n} b_j x^j$. For $m \in \mathbb{N}$, we say $f \equiv g \mod m$ if $a_j = b_j \mod m$ for $0 \le j \le n$. For an odd prime p > 0, let

$$f(x) = x^{p-1} - 1$$
 and $g(x) = (x - 1)(x - 2) \cdots (x - p + 1)$.

Prove that

(i) the polynomial f(x) - g(x) has degree p - 2, and

(ii) $f \equiv g \mod p$.

(7) Prove that the following two groups are isomorphic:

(a) $\mathbb{Z}[X]$, the group of polynomials with integer coefficients under addition, and

(b) $\mathbb{Q}_{>0}$, the group of positive rational numbers under multiplication. Hint: Fundamental theorem of Arithmetic.

- (8) Prove that there cannot be any topological space X such that \mathbb{R} is homeomorphic to $X \times X$ with the product topology.
- (9) Let $A = \frac{\mathbb{C}[X,Y]}{(X^2 + Y^2 1)}$, and x, y denote the images of X, Y in A respectively. If u = x + iy, then prove that

(a) u is a unit in A, and

- (b) u i generates a maximal ideal of A.
- (10) Let A be a real symmetric $m \times m$ matrix with m distinct eigenvalues and v_1, \ldots, v_m be the corresponding eigenvectors. Let C be an $m \times m$ matrix satisfying $\langle Cv_j, v_j \rangle = 0$ for $1 \leq j \leq m$. Prove that there exists an $m \times m$ matrix X such that AX - XA = C.

